
A Large Deviation Principle for Polynomial

Hypergroups

1991 MSC Subject classi�cation: 60F10, 60J10, 43A62

Abstract

Let Sn, n > 1, be a random walk on a polynomial hypergroup (N0, ∗),
i.e. a Markov chain on the nonnegative integers with stationary transition

probabilities Pij = δi ∗µ({j}) where µ is a �xed probability measure on N0.

Under certain conditions on this measure the principle of large deviations

is shown for the distributions of Sn/n. This result comprises the large

deviation principle for birth and death random walks associated with the

polynomials generating the polynomial hypergroup.

1 Introduction

Random walks on polynomial hypergroups provide a uni�ed frame for studying
isotropic random walks on a variety of algebraic structures, comprising random
walks on free groups, on homogeneous trees, on the dual spaces of the Gelfand
pairs (SO(n), SO(n− 1)) (n > 3 ) and on the dual of the compact group SU(2)
(see the survey [8]). Limit theorems for such random walks include laws of large
numbers, central limit theorems and laws of the iterated logarithm (see [17] �
[20]).

The purpose of this paper is to derive another limit theorem (Theorem 1),
namely an analogue of Cramér's theorem concerning large deviations for sums
of independent identical distributed random variables (see for instance [16], Sec-
tion 3). A special case of the result presented here will be the large deviation
principle for random walks on the dual of SU(2) proved in [2]. A related result
on random walks on the dual of an arbitrary compact semisimple Lie group is
given in [5].

The paper is organized as follows: After recalling some basic facts concerning
random walks on polynomial hypergroups and the abstract large deviation prin-
ciple, the main result is stated in section 2. In section 3, a moment generating
function for polynomial hypergroups is introduced which will be used in section 4,
together with a technical result on bounds of the orthogonal polynomials outside
the interval of orthogonality, to prove the main theorem. The explicit form of
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the rate function for birth and death random walks is calculated in section 5.
Finally, we present some examples.

2 The main result

Polynomial hypergroups. This paragraph describes the class of polynomial
hypergroups to be used later. Details on (polynomial) hypergroups in general
and many examples may be found in [8],[10] and [13].

Let (an)n∈N, (bn)n∈N, (cn)n∈N be sequences of real numbers satisfying
an, cn > 0, bn > 0 and an + bn + cn = 1 (n ∈ N). Assume further that there
exist α := limn→∞ an ∈ ]0, 1[, β := limn→∞ bn and γ := limn→∞ cn ∈ ]0, 1[, so
α + β + γ = 1. Note that polynomial hypergroups can be de�ned without this
restriction (see [10]). Using Favard's theorem (see, for instance [3], Theorem
1.4.4) we de�ne a sequence of orthogonal polynomials by

P0(x) = 1, P1(x) = 2
√
αγx+ β

P1(x)Pn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x).

x0 := 1−β
2
√
αγ

= α+γ
2
√
αγ

> 1 is a normalization constant giving P0(x0) = 1, and then

Pn(x0) = 1 for all n ∈ N by induction.
This normalization of the polynomials di�ers from the normalization used

in [10] and is usually employed when dealing with probabilistic limit theorems on
polynomial hypergroups (see [17]�[19]).

Suppose that all the linearization coe�cients g(m,n, k), de�ned by

Pn(x)Pm(x) =
n+m∑

k=|n−m|

g(m,n, k)Pk(x),

are nonnegative. If we de�ne a convolution of point measures on N0 by

(2.1) δm ∗ δn =
n+m∑

k=|n−m|

g(m,n, k)δk

N0 becomes a commutative hypergroup (N0, ∗) with 0 as unit element and the
identity as involution and is called a polynomial hypergroup.

On any polynomial hypergroup there exists a Haar measure m ( i.e. a positive
measure m satisfying δk ∗m = m for every k ∈ N0), which is uniquely determined
by m({0}) = 1. Note that the positivity of the linearization coe�cients implies
that h(n) := m({n}) > 1 for every n and α > γ.
By our assumptions the orthogonality measure π of the polynomials Pn(x) is in
Nevai's class M(0, 1) (see [12]) and we have α > γ if and only if x0 6∈ supp π.
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For any probability measure µ on N0 its Fourier transform µ̂(x) is the con-
tinuous real-valued function

DS → R, µ̂(x) =
∞∑
k=0

µ({k})Pk(x),

where DS := {x ∈ R | |Pn(x)| ≤ 1 ∀n ∈ N}. µ̂(x) is also uniquely de�ned (with
the possible value +∞) for any x with Pn(x) > 0 for every n.
Let µ, ν ∈M1(N0) be probability measures. Then it is easily seen that µ̂ ∗ ν(x) =
µ̂(x) · ν̂(x) if x ∈ DS or if Pn(x) > 0 for every n and µ̂(x), ν̂(x) are both �nite.
Random walks. We shall study Markov chains Sn with stationary transition
probabilities on N0 which are homogeneous with respect to the convolution of the
polynomial hypergroup in the following sense:
S0 = 0 and there exists a probability measure µ on N0 such that

P (Sn = j | Sn−1 = i) = δi ∗ µ({j}) (n ∈ N, i, j ∈ N0).

A Markov chain ful�lling these conditions is called random walk with law µ. For
general properties of such random walks we refer to [7] and [8]. Note that in
the case of µ = δ1 this de�nition agrees with that given in [9]. It is immediate
from the de�nition that the distribution of the variables Sn is given by the n-fold
convolution product µ(n).
The abstract large deviation principle. Consider a sequence Fn of probabil-
ity measures on a polish space E converging weakly to a degenerate distribution
at some point x0 ∈ E (in the main theorem of this paper Fn will be the distribu-
tion of Sn/n and E the interval [0, ∞[).
The abstract de�nition of the large deviation principle is as follows (see [16]):
De�nition:

Let {Fn}n∈N be a sequence of probability measures on a polish space E and
{an}n∈N a divergent sequence of positive numbers. We say that {Fn} satis�es the
large deviation principle with constants {an} and rate function I : E → [ 0, ∞ [,
if the following conditions hold:

(i) I is lower semicontinuous and has compact level sets, i.e. for each m > 0
{x | I(x) ≤ m} is compact.

(ii) For each closed subset A of E

lim sup
n→∞

1

an
logFn(A) ≤ − inf

x∈A
I(x).

(iii) For each open subset G of E

lim inf
n→∞

1

an
logFn(G) > − inf

x∈G
I(x).
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Here and in the following log denotes the natural logarithm.
We need the following constant θ0, related to the normalization constant x0

by
θ0 = cosh−1 x0 (x0 > 1)

= log(x0 +
√
x2

0 − 1) = log(α+γ+|α−γ|
2
√
αγ

)

= log
√

α
γ
> 0 (α > γ).

Now we can state the main result of this paper:

Theorem 1. Let (N0, ∗) be a polynomial hypergroup as de�ned above and let µ
be a probability measure on N0 with �nite support. Denote by Fn the distribution
of Sn/n (n ∈ N) where Sn is a random walk with law µ.
Then the sequence {Fn}n∈N of probability measures satis�es the principle of large
deviations with constants {n} and the convex rate function

I(x) =

{
+∞ if x 6∈ [ 0, k ]
supt>−θ0{tx− c(t)} if x ∈ [ 0, k ]

,

where k is the right endpoint of the support of µ, θ0 is as above and

c(t) = log µ̂(cosh(t+ θ0)) for t > −θ0 .

Furthermore, E∗(X) is the unique minimum point of I(x) where X is a N0-valued
random variable with law µ and E∗(X) is de�ned as in section 3.

Imposing stronger assumptions on the polynomial hypergroup we can prove
a complete analogue of Cramér's Theorem for measures with possibly in�nite
support. The additional condition in the following Corollary is satis�ed e.g. by
Tchebichef polynomials of the �rst kind or by Griñspun polynomials (see section
6 or [10], Example 3.(g)(ii)) and their two parameter extension (see [11]).

Corollary 1. Let (N0, ∗) be a polynomial hypergroup as de�ned above and further
assume that the Haar weights h(n) := m({n}) are uniformly bounded.
Let µ be a probability measure on N0 with Mµ(t) := µ̂(cosh t) < ∞ for every
t ∈ R and denote by Fn the distribution of Sn/n (n ∈ N) where Sn is a random
walk with law µ.
Then the sequence {Fn}n∈N of probability measures satis�es the principle of large
deviations with constants {n} and the convex rate function

I(x) =

{
+∞ if x < 0
supt>0{tx− logMµ(t)} if x > 0

.

Furthermore, x = 0 is the unique minimum point of I(x).

Remarks. (i) In the Theorem we have domI = {x : I(x) <∞} ⊂ [ 0, k ]. This
agrees with the fact that for Sn as in the Theorem we have
P (Sn/n ∈ [ 0, k ] ) = 1 for every n.
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(ii) The Theorem can be regarded as a result on the rate of convergence in the
weak law of large numbers: Sn/n converges in probability exponentially
fast to its limit (see [6], Theorem II.6.3).

(iii) The unique minimum point of I(x) is strictly positive if and only if x0 6∈
supp π. This seems to be the only property of the orthogonality measure
π that matters for our result. Theorem 4 below shows this at least for the
birth and death random walk.

(iv) A related result for Sturm-Liouville hypergroups on [0,∞[ will be presented
in a forthcoming paper.

3 The (modi�ed) moment generating function

In this section the analogue of the moment generating function for polynomial
hypergroups will be de�ned. For this, the following de�nition of (modi�ed) mo-
ments on polynomial hypergroups introduced by Voit [17] is needed (see also [20]
for a discussion of moment functions on arbitrary hypergroups).
Let the functions ϕn,θ and mn (θ ∈ C, n ∈ N) be de�ned by

ϕn,θ(k) :=

(
∂

∂t

)n
Pk(cosh t)|t=θ and mn(k) := ϕn,θ0(k).

The functions mn are called moments.
For any N0-valued random variable X with law µ

E∗(X) := E(m1(X)) =
∞∑
k=0

m1(n)µ({n})

is called the modi�ed expectation of X (E denotes the usual expectation of a
random variable). It has the following properties (n ∈ N ):

(i) m1(n) ≡ 0 if α = γ and m1(n) > 0 if α > γ.

(ii) E∗(Sn) = nE∗(X) for each random walk with law µ, where X is a random
variable with law µ.

Proofs of these facts may be found in [17] or [20].

The following Lemma will be used in section 4 to replace ent by Pn(cosh(t+ θ0))
for t > −θ0.

Lemma 1. Let the orthogonal polynomials Pn(x) and θ0 be de�ned as above.

5



(i) For t > 0
γne

nt ≤ Pn(cosh(t+ θ0)) ≤ ent

where 0 < γn ≤ 1/2 is monotonically decreasing and lim
n→∞

1

n
log γn = 0.

If furthermore the Haar weights are uniformly bounded there exists a con-
stant 0 < γ ≤ 1/2 with

γent ≤ Pn(cosh t) ≤ ent.

(ii) Let α > γ i.e θ0 > 0. For −θ0 ≤ t < 0

ent ≤ Pn(cosh(t+ θ0)) ≤ δne
nt

where δn > 2 is monotonically increasing and lim
n→∞

1

n
log δn = 0.

Proof. The assumptions imply the following property (T) (see [12]):

Pn(x) =
n∑
k=0

h(n, k)Tk(x)

for every x ∈ R, where h(n, k) > 0 ,
∑n

k=0 h(n, k) cosh kθ0 = 1 and Tn(x) denote
the Tchebichef polynomials of the �rst kind.

(i) For t > 0 we have

1

2
ek(t+θ0) ≤ cosh k(t+ θ0) ≤ cosh kθ0e

kt.

Thus

Pn(cosh(t+ θ0)) =
n∑
k=0

h(n, k) cosh k(t+ θ0) ≤
n∑
k=0

h(n, k) cosh kθ0 e
kt ≤ ent

and

Pn(cosh(t+ θ0)) >
1

2

n∑
k=0

h(n, k) ek(t+θ0) >
1

2
h(n, n)

(√
α/γ

)n
ent.

Denoting the leading coe�cient of Pn(x) by σn it follows immediately that

h(n, n) =
σn

2n−1
=

2(
√
αγ)n∏n−1

k=1 ak

and thus
1

2
h(n, n)

(√
α/γ

)n
=

αn∏n−1
k=1 ak

.
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If this sequence is not monotonically decreasing, let σk := supn>k an and

γn :=
αn∏n−1
k=1 σk

,

which has the desired properties since σk → α for k →∞.
Now suppose that h(n) ≤M . Then it is easily seen that α = γ and θ0 = 0.
Denoting by pn(x) the corresponding orthonormal polynomials we have for
every t > 0

pn(cosh t)

ent
=
√
h(n)

Pn(cosh t)

ent
≤
√
M.

Thus the orthogonality measure corresponding to the polynomials Pn(x)
satis�es Szegö's condition on [−1, 1] (see [15],p. 247), and

h(n, n) =
σn

2n−1
=

λn

2n−1
√
h(n)

>
λn

2n−1
√
M
,

where λn denotes the leading coe�cient of pn(x). Since λn/2
n tends to

a positive limit ([15],Theorem 3.5) there exists a constant γ > 0 with
h(n, n)/2 > γ.

(ii) For −θ0 ≤ t < 0 we have cosh k(t+ θ0) > cosh kθ0e
kt and thus

Pn(cosh(t+ θ0)) > ent. Now de�ne orthogonal polynomials Qn(x) by

Qn(x) :=
Pn(x)

Pn(1)
.

The coe�cients ãn, b̃n, c̃n of the 3-term-recurrence-relation of Qn(x) satisfy
ãn → α̃, b̃n → β̃ and c̃n → γ̃ with α̃ = γ̃ (see [18], 2.12). Using part (i) we
get

Pn(cosh(t+ θ0)) =
Qn(cosh(t+ θ0))

Qn(cosh θ0)
≤ γ̃−1

n e−nθ0 en(t+θ0) ≤ γ̃−1
n ent.

The proof is completed by setting δn = γ̃−1
n .

Remark. In general, it is impossible to replace the lower bound γn in part (i)
by a strictly positive constant whenever the Haar weights are unbounded. A
counterexample is provided by the Tchebichef polynomials of the second kind.
These have the explicit representation

Pn(cos t) = P (1/2,1/2)
n (cos t) =

sin(n+ 1)t

(n+ 1) sin t

and consequently

Pn(cosh t) =
sinh(n+ 1)t

(n+ 1) sinh t
= ent

1− e−2(n+1)t

(n+ 1)(1− e−2t)
.
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For µ ∈M1(N0) de�ne its (usual) moment generating function Λµ(t) by

Λµ(t) =

∫
N
etx dµ(x).

Theorem 2. Let (N0, ∗) be a polynomial hypergroup as de�ned in section 2 and let
µ be a probability measure on N0 for which there exists t0 > θ0 with Λµ(t0) <∞.
Then the function Mµ(t) : [−θ0, t0 − θ0]→] 0, ∞[ de�ned by

t 7→ µ̂(cosh(t+ θ0)) =
∞∑
k=0

µ({k})Pk(cosh(t+ θ0))

is of class C∞ and

E(mn(X)) = µn =

(
∂

∂t

)n
µ̂(cosh(t+ θ0))|t=0 =

(
∂

∂t

)n
Mµ(t)|t=0

for every n ∈ N.

Proof. First note that Λµ(t) < ∞ for every t ≤ t0. Thus Mµ(t) is well de�ned
and �nite by Lemma 1. For t > −θ0 property (T) yields

ϕn(k, t+ θ0) =
k∑
l=0

h(k, l) ln 1/2( el(t+θ0) + (−1)ne−l(t+θ0))

≤
k∑
l=0

h(k, l) ln el(t+θ0) ≤ kn ek(t+θ0).

Since the moment generating function is �nite on (0, t0) it is analytic on (0, t0)
with (

∂

∂t

)n
Λµ(t) =

∫ ∞
0

xn etx dµ(x)

for t ∈ (0, t0). This means that k 7→ kn ekt ∈ L1(µ) for every t ∈ (0, t0) and n > 1.
By Lebesgue's dominated convergence theorem, the proof is complete.

Remarks. (i) The Theorem shows that on polynomial hypergroups the function
Mµ(t) = µ̂(cosh(t + θ0)) (t > −θ0) is the natural analogue of the usual
moment generating function. Therefore, Mµ(t) will be called (modi�ed)
moment generating function of the measure µ. Since f(t) = µ̂(cos(t+ iθ0))
is the Fourier transform of the measure µ, we haveMµ(t) = f(it) (t > −θ0)
as in the classical case.

(ii) The conclusions of this Theorem are comparable to the di�erentiability
properties of the Fourier transform of the measure µ (see Theorem 1 and
Theorem 2 in [17]).
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4 Proof of the large deviation principle

The following theorem of Ellis will be used:

Theorem 3 ([6], Theorem II.6.1). Let Wn be an arbitrary sequence of random
variables with values in R and (an) a divergent sequence of positive numbers.
De�ne for t ∈ R:

cn(t) :=
1

an
logE(exp(tWn)).

Assume that

(a) Each cn(t) is �nite for every t ∈ R.

(b) c(t) := limn→∞ cn(t) exists, is �nite and di�erentiable for every t ∈ R.

Then the distributions Fn of Wn/an satisfy the large deviation principle with
constants (an) and the convex rate function

I(x) = sup
t∈R
{tx− c(t)}.

Thus, for proving Theorem 1 it su�ces to check the conditions of Theorem 3.
This is partly accomplished by the following Lemma.

Lemma 2. Let µ be a probability measure on N0 with Λµ(t) <∞ for every t ∈ R
and let Sn be a random walk with law µ. De�ne the functions cn(t) for Sn with
an = n as in Theorem 3. Then

(i) Each cn(t) is �nite for every t ∈ R.

(ii) c(t) = limn→∞ cn(t) exists for every t ∈ R and is �nite.

Proof. We have for m,n ∈ N (see Equation (2.1)):

exp(t(m ∗ n)) ≤ exp(t(m+ n)) t > 0,(4.1)

exp(t(m ∗ n)) > exp(t(m+ n)) t ≤ 0,(4.2)

and

(4.3)

∫ ∞
0

etx dµ(n+m)(x) =

∫ ∞
0

exp(t(x ∗ y)) dµ(m)(x)dµ(n)(y),

where exp(t(x ∗ y)) :=
∫
etz d(δx ∗ δy)(z).

(i) Thus using (4.1)�(4.3) and Jensen's inequality we have for t < 0

0 > cn(t) > 1/n log(Λµ(t))n = log Λµ(t) > t

∫ ∞
0

x dµ(x) > −∞

and analogously for t > 0

0 ≤ cn(t) ≤ log Λµ(t) < +∞.
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(ii) By (4.1)�(4.3) the function f(n) = log Λµ(n)(t) is subadditive for each �xed
t > 0 and the function g(n) = − log Λµ(n)(t) is subadditive for each �xed
t ≤ 0. The conclusion follows from Lemma 3.1.3 on subadditive functions
in [4].

Proof of Theorem 1:

By assumption there exists a k ∈ N0 with µ =
∑k

j=0 µj δj and it is obvious that
Λµ(t) <∞ for every t ∈ R. By Lemma 2 it remains to prove the di�erentiability
of c(t) for every t ∈ R and the form of I(x).

(i) First let t > 0. By means of Lemma 1 we obtain for n ∈ N and 0 ≤ j ≤ nk:

γnk e
jt ≤ Pj(cosh(t+ θ0)) ≤ ejt.

This yields

Λµ(n)(t) >
nk∑
j=0

Pj(cosh(t+ θ0))µ(n)({j}) = (µ̂(cosh(t+ θ0)))n > γnkΛµ(n)(t)

and thus
0 ≤ cn(t)− logMµ(t) ≤ −1/n log γnk.

By Lemma 1 this means c(t) = logMµ(t) for t > 0.
Next let −θ0 ≤ t < 0. As above, we obtain

0 ≤ logMµ(t)− cn(t) ≤ 1/n log δnk

and c(t) = logMµ(t) for −θ0 ≤ t < 0.
Finally let t < −θ0. We have c(t) ≤ 0 for t ≤ 0 and furthermore c

′
+(−θ0) =

0 since

c
′

+(−θ0) =

∑k
j=0 µjϕ1,0(j)

µ̂(1)

and

ϕ1,0(j) =

{
∂
∂t
Pj(cosh t)|t=0 if α = γ

Pj(1) ∂
∂t
Qj(cosh t)|t=0 if α > γ,

where Qj(x) is de�ned as in the proof of Lemma 1(ii). Now [17], Lemma
3.2.3 shows ϕ1,0(j) = 0 for every j. Thus for t ≤ −θ0, c(t) is a �nite convex
function bounded to the left of the minimum point t = −θ0. Hence it is
constant and c(t) = c(−θ0) for every t ≤ −θ0.

(ii) Next we prove the form of I(x). For t > 0 we have c(t) ≤ log Λµ(t) ≤ kt
(see Lemma 2). But then

I(x) > sup
t>0
{tx− kt} = +∞
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for x > k. As c(t) is constant for t ≤ −θ0 we get for x < 0

I(x) > sup
t≤−θ0

{tx− c(t)} = sup
t≤−θ0

{tx} − c(−θ0) = +∞.

Finally let 0 ≤ x ≤ k. Then tx− c(t) ≤ −θ0x− c(−θ0) for every t ≤ −θ0.
This means

I(x) = sup
t∈R
{tx− c(t)} = sup

t>−θ0
{tx− c(t)}.

E∗(X) is the unique minimum point of I(x) by Theorem 2 and [6], Theorem
II.6.3.

Proof of Corollary 1:

Under the assumption of the Corollary we have α = γ and by Lemma 1

γent ≤ Pn(cosh(t)) ≤ ent

for t > 0 (n ∈ N) where 0 < γ ≤ 1/2. Thus Λµ(t) ≤ 1/γ µ̂(cosh t) < ∞. As in
the proof of Theorem 1 we obtain

c(t) =

{
0 if t < 0

logMµ(t) if t > 0
.

This yields the conclusion as in the proof of Theorem 1.

5 The rate function for birth and death random

walks

In the special case that µ = δ1 the random walk is called a birth and death random
walk (see [9]). Its rate function will now be calculated. This theorem may be
compared to [4], Exercise 1.2.11.

Theorem 4. Let (an)n∈N, (bn)n∈N, (cn)n∈N be sequences of real numbers satisfying
the assumptions of section 2. Denote by Sn the random walk with the transition
probabilities

P (Sn+1 = j| Sn = i) =



an j = i+ 1

bn j = i

cn j = i− 1

1 i = 0, j = 1

0 |j − i| > 1.
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Then the distributions Fn of Sn/n satisfy the principle of large deviations with
constants {n} and the rate function

I(x) =



+∞ x 6∈ [0, 1]

log 1
2
√
αγ+β

x = 0

x log

(
βx+

√
4αγ + (β2 − 4αγ)x2

)2

2α
(

4αγ(1− x) + β(βx+
√

4αγ + (β2 − 4αγ)x2)
)

+(1− x) log
(1− x)(βx+

√
4αγ + (β2 − 4αγ)x2)

4αγ(1− x) + β(βx+
√

4αγ + (β2 − 4αγ)x2)

0 < x < 1

log 1
α

x = 1.

Proof. The �rst part follows from Theorem 1. It remains to prove the form of
the rate function for 0 ≤ x ≤ 1.
In the case of a birth and death random walk we have

c
′
(t) =

{
sinh(t+θ0)

cosh(t+θ0)+c/2
t > −θ0

0 t ≤ −θ0

.

where c := β√
αγ
. Thus for 0 < x < 1 the equation c

′
(t) = x has the unique

solution

t(x) = log

√
γ(cx+

√
4(1− x2) + c2x2)

2
√
α(1− x)

.

By [6],Theorem VI.5.3. we have I(x) = xt(x) − log(2
√
αγ cosh(t(x) + θ0) + β)

and a straightforward calculation yields the form of I(x) for 0 < x < 1.
Finally I(0) and I(1) are easily obtained from the formulas I(0) = limx↓0 I(x)
and I(1) = limx↑1 I(x) ([6], Theorem VI.3.2.).

Remark. Note that in the case of a birth and death random walk the rate function
depends only on the values of α, β and γ.

6 Examples

Jacobi polynomials. Let a, b ∈ R with a > b > −1 and a+ b+ 1 > 0. De�ne

an =
2(n+ a+ b+ 1)(n+ a+ 1)(a+ b+ 2)

(2n+ a+ b+ 2)(2n+ a+ b+ 1)2(a+ 1)

bn =
a− b

2(a+ 1)

(
1− (a+ b+ 2)(a+ b)

(2n+ a+ b+ 2)(2n+ a+ b)

)
cn =

2n(n+ b)(a+ b+ 2)

(2n+ a+ b+ 1)(2n+ a+ b)2(a+ 1)
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These sequences induce polynomial hypergroups and the corresponding orthogo-
nal polynomials are the Jacobi polynomials P

(a,b)
n (x) (cf. [10], 3.(a)). We have

α =
a+ b+ 2

4(a+ 1)
= γ and β =

a− b
2(a+ 1)

and consequently x0 = 1 and θ0 = 0.

Random walks on the dual spaces of the Gelfand pairs (SO(n), SO(n−
1)) (n > 3). Given a Gelfand pair (G,K) the set S of all bounded spherical
functions may be regarded as the dual space of (G,K). If G is compact, all
bounded spherical functions are positive de�nite and we can de�ne a probability
preserving convolution ∗ on the set of bounded complex measures on S (see for
example [14], section I.9). A random walk on S is then a stationary Markov chain
Xn with transition probabilities

P (Xn+1 ∈ A|Xn = x) = δx ∗ µ(A) (n ∈ N, x ∈ S,A ⊂ S).

For (G,K) = (SO(n), SO(n − 1)) S may be identi�ed with {P (a,a)
n (x) |n ∈

N0 , x ∈ [−1, 1]} where a = 1
2
(n − 2) (see [1]) and the convolution agrees with

the one introduced in section 2.

Grinspun polynomials Tn(x; a) (cf. [10], 3(g)ii). These polynomials provide
an example of a polynomial hypergroup with bounded Haar measure. Fix a > 2.
Then the de�ning sequences (an)n∈N0 and (cn)n∈N0 are given by

a1 =
a− 1

a
c1 =

1

a
and an =

1

2
= cn n > 2.

Isotropic random walks on trees. Let Ta+1 be a homogeneous tree of order
a + 1, that is an in�nite connected graph, in which every node belongs to a + 1
edges. Let Γ be the vertex set of Ta+1 and let G be the automorphism group of
Γ. An isotropic stationary random walk on Ta+1 is a Markov chain (S̃n)n∈N0 on
Γ that is starting at a vertex v0 and whose transition probabilities

P (u, v) = P (S̃n+1 = v|S̃n = u) (n ∈ N0, u, v ∈ Γ)

are preserved by all elements of G. This is equivalent to the condition

(6.1) P (u, v) =
1

|{w ∈ Γ : d(w, v) = d(u, v)}|
µ({d(u, v)})

where d is the usual metric on Ta+1 and µ is a probability measure on N0.
If π : Γ→ N0 is de�ned by π(w) = d(w, v0), then Sn := π(S̃n) is a Markov chain
on N0 and we have

P (Sn+1 = l |Sn = k) =

∑
w∈Γ,d(w,v0)=k P (S̃n = w)P (d(S̃n+1, v0) = l | S̃n = w)∑

w∈Γ,d(w,v0)=k P (S̃n = w)
.

13



Since P (S̃n = w) and P (d(S̃n+1, v0) = l | S̃n = w) depend only on d(w, v0) and
not on w itself, we obtain

(6.2) P (Sn+1 = l |Sn = k) = P (d(S̃n+1, v0) = l | S̃n = w)

for any w ∈ Γ satisfying d(w, v0) = k.
Denoting the stabilizer of v0 by K we see that the state space of (Sn)n∈N0 is
actually the set of K-orbits of Ta+1. Denoting the canonical convolution on G//K
(see [14], section I.5 and I.7) by ∗, equations (6.1) and (6.2) imply

P (Sn+1 = l |Sn = k) = δk ∗ µ({l}).

This convolution agrees with the convolution of the polynomial hypergroup gen-
erated by the sequences

an =
a

a+ 1
cn =

1

a+ 1

(cf. [18], section 5). The corresponding orthogonal polynomials are the Cartier
polynomials.

ACKNOWLEDGEMENT:

It is a pleasure to thank M. Voit for suggesting this problem and for several
helpful discussions. I would also like to thank the referee whose suggestions led
to an improvement of the presentation of this paper.

References

[1] R. Askey, N. H. Bingham: Gaussian processes on compact symmetric spaces.
Z. Wahrsch. verw. Geb. 37, 127�143 (1976)

[2] W. Cegla, J.T. Lewis, G.A. Raggio: The free energy of quantum spin systems
and large deviations. Comm. Math. Phys. 118, 337�354 (1988)

[3] T.S. Chihara: An Introduction to Orthogonal Polynomials. New York: Gor-
don&Breach 1978

[4] J.D. Deuschel,D.W. Stroock: Large Deviations. New York: Academic Press
1989

[5] N.D. Du�eld: A large deviation principle for the reduction of product rep-
resentations. Proc. Amer. Math. Soc. 109, 503�515 (1990)

[6] R.S. Ellis: Entropy, Large Deviations and Statistical Mechanics. Berlin Hei-
delberg New York: Springer 1985

14



[7] L. Gallardo, O. Gebuhrer: Marches aléatoires et hypergroupes. Expo. Math.
5, 41�73 (1987)

[8] H. Heyer: Probability theory on hypergroups: A survey. In H. Heyer(ed.):
Probability Measures on Groups VII. (Lect. Notes Math., vol. 1064, pp.
481�550) Berlin Heidelberg New York: Springer 1984

[9] S. Karlin, J. McGregor: Random walks. Ill. J. Math. 3, 66�81 (1959)

[10] R. Lasser: Orthogonal polynomials and hypergroups. Rend. Math. 2, 185�
209 (1983)

[11] R. Lasser: Lacunarity with respect to orthogonal polynomials. Acta Sci.
Math. 47, 391�403 (1984)

[12] R. Lasser, M. Rösler: A note on property (T) of orthogonal polynomials.
Arch. Math. 60, 459�463 (1993)

[13] R. Lasser: Orthogonal polynomials and hypergroups II - the symmetric case.
Trans. Amer. Math. Soc. 341, 749 � 770 (1994)

[14] G. Letac: Problèmes classiques de probabilité sur un couple de Gelfand.
In D. Duguè et al.(eds.): Analytical Methods in Probability Theory. (Lect.
Notes Math., vol. 861, pp. 93�127) Berlin Heidelberg New York: Springer
1981

[15] D.S. Lubinsky: A survey of general orthogonal polynomials for weights on
�nite and in�nite intervals. Acta Appl. Math. 10, 237�296 (1987)

[16] S.R.S. Varadhan: Large Deviations and Applications. Philadelphia: SIAM
1984

[17] M. Voit: Laws of large numbers for polynomial hypergroups and some ap-
plications. J. Theoret. Probab. 3, 245�266 (1990)

[18] M. Voit: Central limit theorems for random walks on N0 that are associated
with orthogonal polynomials. J. Multiv. Anal. 34, 290�322 (1990)

[19] M. Voit: A law of the iterated logarithm for a class of polynomial hyper-
groups. Mh. Math. 109, 311�326 (1990)

[20] Hm. Zeuner: Moment functions and laws of large numbers on hypergroups.
Math. Z. 211, 369�407 (1992)

15


